

CSE 125 Discrete Mathematics

Nazia Sultana Chowdhury nazia.nishat1971@gmail.com

The Growth of Functions

- Determining how fast an algorithm can solve a problem as the size of the input grows.
- Comparing the efficiency of two different algorithms for solving the same problem.

Describing Growth of Functions

- Big-O Notation
- Big-Omega
- Big-Theta Notation

Big-O Notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers.

• f(x) is O(g(x)) if there are constants C and k such that $|f(x)| \le C|g(x)|$ whenever x > k.

Big-O Notation

- Describes the long-term growth rate of functions.
- Doesn't care about constants.
- Gives an upper bound.

f(n), in terms of O(g(n))? Here, $f(n) = n^2 + 2n$ (0) $f(n) \leq Cg(n)$ $=> n^2 + 2n \leq 1$ $=) n^{2} + 2n \leq C \cdot n^{2}$ \Rightarrow $n^2 + 2n \leq 3n^2$, for $C \geq 3$ and $n \geq 1$

CS Scanned with CamScan

Big-Omega

- Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers.
- f(x) is $\Omega(g(x))$ if there are positive constants C and k such that $|f(x)| \ge C|g(x)|$ whenever x > k.
- Lower Bound.

f(n) in terms of D(g(n))? $f(n) \ge Cg(n)$ = $n^2 + 2n >$ $= 2 n^2 + 2n \rightarrow C n^2$ =) $n^2 + 2n \gg n^2$, for C=1 and $n \gg 1$

Big-Theta Notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. f (x) is $\Theta(g(x))$ if

- f(x) is O(g(x)) and
- f(x) is $\Omega(g(x))$.

Big-Theta

